Abstract
Several problems have been reported about accumulated microorganisms in reclaimed water distribution systems. This paper presents the results of residual organic matter (OM) removal and apparent bacterial regrowth potential of treated wastewater obtained from laboratory-scale experiments using advanced biological treatments: two immobilization processes in series and a membrane bioreactor (MBR) process. Furthermore, a nanofiltration (NF) membrane process was applied to effluents of both advanced biological treatments. The immobilization process removed large molecular weight (MW) fractions >5,000 since immobilized microorganisms had sufficiently acclimated. The NF membrane was more effective in rejecting large MW fractions in the effluents of the immobilization and the MBR treatments. But it was difficult to reject small MW fractions <1,000 by NF. Neutral hydrophilic fraction of DOC was reduced by both advanced biological processes, and it can be thought that the microorganisms in the advanced processes could decompose and grow on some part of the neutral hydrophilic fraction. Quantity of attached microorganisms in the second immobilization reactor was significantly reduced compared to that in the first immobilization reactor. This suggests that apparent bacterial regrowth potential is controlled by the accumulation of effective microorganisms in the first reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.