Abstract

The replication frequency of plasmid R1 is determined by the availability of the initiator protein RepA. Synthesis of RepA is negatively controlled by an antisense RNA, CopA, which forms a duplex with the upstream region of the RepA mRNA, CopT. We have previously shown that the in vitro formation of the CopA-CopT duplex follows second-order kinetics and occurs in at least two steps. The first step is the formation of a transient (kissing) complex, which is subsequently converted to a persistent duplex. Here, we investigate the details of the reaction scheme and determine the rate constants of the pathway from the free RNAs to the complete duplex. Using a shortened CopA RNA (CopI) we have been able to determine the association and dissociation rate constants (k1,k-1) for the kissing complex (which are inferred to be the same for CopI-T and CopA-T), and measured the hybridization rate constant k2 (for CopA-T k2 is at least 1000-fold greater than for CopI-T). The analysis of CopA derivatives of mutant and wild-type origin shows that the rate of formation of the kissing complex is rate-limiting for the overall pairing reaction between CopA and CopT, both in vitro and in vivo. The biological implications of the kinetically irreversible RNA-RNA binding reaction scheme are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call