Abstract

The influence of relative electron tunneling rates on electron transport in a double-barrier single-molecule junction is studied. The junction is defined by positioning a scanning tunneling microscope tip above a copper phthalocyanine molecule adsorbed on a thin oxide film grown on the NiAl(110) surface. By tuning the tip-molecule separation, the ratio of tunneling rates through the two barriers, vacuum and oxide, is controlled. This results in dramatic changes in the relative intensities of individual conduction channels, associated with different vibronic states of the molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.