Abstract

Reflection at an interface between two materials can be modulated by means of varying the optical properties at the interface. We have studied this modulation of the reflected light with an aim to develop a flashing retroreflector for roadside conspicuity applications. Reflectance modulation has previously been studied under the conditions of total internal reflection (TIR), where a light-absorbing material placed in the associated evanescent wave region can be used to attenuate the intensity of the reflected light. If instead the light rays strike the interface at an angle that is slightly smaller than the critical angle required for TIR, they instead undergo a substantial, but partial, reflection. We have demonstrated that an analogous attenuation effect to the TIR situation is observed, even though there is no evanescent wave present under these circumstances. We have studied this behavior and have developed a model to describe the motion of the absorbing material and the related interference effects that occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.