Abstract
Radiofrequency ablation is an ablation technique to treat tumors with focused heat. Computer tomography, ultrasound and magnetic resonance imaging (MRI) are imaging modalities which can be used for image-guided procedures. MRI offers several advantages in comparison to the other imaging modalities, such as radiation-free fluoroscopic imaging, temperature mapping, a high-soft-tissue contrast and free selection of imaging planes. This work addresses the application of 3Dcontrollers for controlling interventional, fluoroscopic MR sequences at the scenario of MR-guided radiofrequency ablation of hepatic malignancies. During this procedure, the interventionalist can monitor the targeting of the tumor with near-real time fluoroscopic sequences. In general, adjustments of the imaging planes are necessary during tumor targeting, which is performed by an assistant in the control room. Therefore, communication between the interventionalist in the scanner room and the assistant in the control room is essential. However, verbal communication is impaired due to the loud scanning noises. Alternatively, non-verbal communication between the two persons is possible, however limited to a few gestures and susceptible to misunderstandings. This work is analyzing different 3D-controllers to enable control of interventional MR sequences during MR-guided procedures directly by the interventionalist. Leap Motion, Wii Remote, SpaceNavigator, Phantom Omni and Foot Switch where selected. For that a simulation was built in C++ with VTK to feign the real scenario for test purposes. Previous results showed that Leap Motion is not suitable for the application while Wii Remote and Foot Switch are possible input devices. Final evaluation showed a generally time reduction with the use of 3D-controllers. Best results were reached with Wii Remote in 34 seconds. Handholding input devices like Wii Remote have further potential to integrate them in real environment to reduce intervention time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.