Abstract

It is well known that the constant injection rate flow in radial Hele-Shaw cells leads to the formation of highly branched patterns, where finger tip-splitting events are plentiful. Different kinds of patterns arise in the lifting Hele-Shaw flow problem, where the cell's gap width grows linearly with time. In this case, the morphology of the emerging structures is characterized by the strong competition among inward moving fingers. By employing a mode-coupling theory we find that both finger tip-splitting and finger competition can be restrained by properly adjusting the injection rate and the time-dependent gap width, respectively. Our theoretical model approaches the problem analytically and is capable of capturing these important controlling mechanisms already at weakly nonlinear stages of the dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.