Abstract
Vehicle suspension systems, which affect driving performance and passenger comfort, are actively researched with the development of technology and the insufficient quality of passive suspension systems. This paper establishes the suspension model of a quarter of the car and active control is realized. The suspension model was created using the Lagrange–Euler method. LQR, fuzzy logic control (FLC), and fuzzy-LQR control algorithms were developed and applied to the suspension system for active control. The purpose of these controllers is to improve car handling and passenger comfort. Undesirable vibrations occur in passive suspension systems. These vibrations should be reduced using the proposed control methods and a robust system should be developed. To enhance the performance of the fuzzy logic control (FLC) and fuzzy-LQR control methods, the optimal values of the coefficients of the points where the feet of the member functions touch are calculated using the particle swarm optimization (PSO) algorithm. Then, the designed controllers were simulated in the computer environment. The success of the control performance of the applied methods concerning the passive suspension system was compared in percentages. The results are presented and evaluated graphically and numerically. Using the integral time-weighted absolute error (ITAE) criterion, the methods were compared with each other and with the studies in the literature. As a result, it was found that the proposed control method (fuzzy-LQR) is about 84.2% more successful in body motion, 90% in car acceleration, 84.5% in suspension deflection, and 86.7% in tire deflection compared to the studies in the literature. All these results show that the car’s ride comfort has been significantly improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.