Abstract
Solid-state proton-conductive materials have been of great interest for several decades due to their promising application as electrolytes in fuel cells and electrochemical devices. Metal-organic materials (MOMs) have recently been intensively investigated as a new type of proton-conductive materials. The highly crystalline nature and structural designability of MOMs make them advantageous over conventional noncrystalline proton-conductive materials-the detailed investigation of the structure-property relationship is feasible on MOM-based proton conductors. This review aims to summarize and examine the fundamental principles and various design strategies on proton-conductive MOMs, and shed light on the nanoconfinement effects as well as the importance of hydrophobicity on specific occasions, which have been often disregarded. Besides, challenges and future prospects on this field are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.