Abstract

Micrometastasis is a major problem for prostate cancer (CaP) patients. Our study investigated the therapeutic potential of multiple targeted alpha-therapy (MTAT) in the treatment of CaP micrometastases (spheroids) using (213)Bi-labeled multiple targeted alpha-radioimmunoconjugates. The expression of multiple tumor-associated antigens (TAAs) on frozen sections of human fresh CaP tissues and spheroids cultured from DU 145 and LNCaP-LN3 CaP cell lines was detected by immunohistochemistry and flow cytometry. Targeting vectors were two monoclonal antibodies (MAbs), and plasminogen activator inhibitor type 2 (PAI2) that binds to cell surface urokinase plasminogen activator (uPA). These vectors were labeled with (213)Bi using standard methodology. DU 145 and LNCaP-LN3 spheroids were incubated with different activities of test and control alpha-conjugates (ACs), and spheroid growth was measured for volume change and growth delay over a 50-day period using light microscopy. TAAs were expressed heterogeneously on frozen sections from human CaP tissues and CaP spheroids. MTAT combining three ACs (one-third dose of each) with an activity of 6.4 MBq/ml completely targeted small DU 145 and LNCaP-LN3 spheroids (diameter <100 microm) and slightly regressed the growth of medium spheroids (180-200 microm); MTAT with 2.2 or 4.8 MBq/ml activities delayed the growth of tumor spheroids. Our results suggest that the cytotoxicity of MTAT to CaP spheroids is highly dependent on antigenic expression, concentration of radioactivity and spheroid size. MTAT may be a potent therapeutic agent for micrometastases, effectively targeting small CaP cell clusters, and overcoming the heterogeneous expression of targeted antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.