Abstract

Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function.

Highlights

  • Small objects are commonly manipulated using a precision grip with the tips of the index finger and the thumb

  • The grip and load forces generated were fairly smooth from the grip onset, and formed a small peak shortly after the apparatus had been lifted from the table

  • Differences in static grip force and slip force increased with object mass, so the subjects retained a greater grip force as a margin against slippage for the objects with a heavier mass (Fig 3A)

Read more

Summary

Introduction

Small objects are commonly manipulated using a precision grip with the tips of the index finger and the thumb. Prehension of Lightweight Objects movable object, aiming to evaluate finger forces normal (grip force) and tangential (lift or load force) to the grip surface, and in some cases tangential torques [3,4,5]. They found that the gripto-load force balance was automatically adjusted to a given finger-surface frictional condition. The more slippery the grasping surface, the higher the ratio of grip force to load force (hereafter denoted as the GF/LF ratio) They showed that the grip force was composed of two components: a voluntarily and/or reflexively adjusted excess force for preventing the object slipping from the fingers, and a minimum required force (slip force) that could be determined by current finger-surface friction. Visual information on an object’s properties, such as mass (or weight), density, and friction, and sensory memory acquired in previous lifts are usually used in this process [15,16,17,18]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.