Abstract

Abstract In order to improve performance of closed loop control and achieve highly accurate reference trajectory tracking, motion controllers have to utilize the advanced control and system state estimation algorithms. Classical PID (Proportional-Integral-Derivative) controller includes calculation of derivation of a process value in order to achieve system desired performance of a system. This paper presents Kalman filter as an optimal estimation algorithm on the model of a hydraulic actuator which is equally applicable to any other application that involves calculating derivations of noisy measurements. Alternative form of Kalman filter, suitable for implementation on a PLC (Programmable Logic Controller) or any other embedded system is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.