Abstract
Because of many suitable properties, collagen sponges are used as an acellular implant or a biomaterial in the field of tissue engineering. Generally, the inner three-dimensional structure of the sponges influences the behavior of cells. To investigate this influence, it is necessary to develop a process to produce sponges with a defined, adjustable, and homogeneous pore structure. Collagen sponges can be produced by freeze-drying of collagen suspensions. The pore structure of the freeze-dried sponges mirrors the ice-crystal morphology after freezing. In industrial production, the collagen suspensions are solidified under time- and space-dependent freezing conditions, resulting in an inhomogeneous pore structure. In this investigation, unidirectional solidification was applied during the freezing process to produce collagen sponges with a homogeneous pore structure. Using this technique the entire sample can be solidified under thermally constant freezing conditions. The ice-crystal morphology and size can be adjusted by varying the solute concentration in the collagen suspension. Collagen sponges with a very uniform and defined pore structure can be produced. Furthermore, the pore size can be adjusted between 20-40 microm. The thickness of the sponges prepared during this research was 10 mm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.