Abstract

Boron doped polysilicon nanowire devices were fabricated using lithography-based top-down method. The devices, implanted by boron ions at different angles (0°,20°,30°,45°), exhibited significant dependence of electrical conductivity on incident implantation angle. Monte Carlo simulations of the dopant distribution, show that the projected range of boron implant increase with decreasing incident angle, in agreement with literature SRIM (Stopping and Range of Ion in Matter) reported data. The simulations and electrical measurements, show that geometrical shadowing reduce the device conductivity, while lower incident implantation angles increase it. This implies that Polysilicon Nanowires conductivity can be controlled by changing the implant angle, and this is beneficial for ‘top=down’ fabrication of SiNW sensors based on accumulation and depletion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.