Abstract
This study presents methods for understanding, modeling and control of tele-operated pneumatic actuators for rehabilitation in Magnetic Resonance Imaging (MRI). Pneumatic actuators have excellent MRI-compatibility as opposed to conventional electro-mechanical systems; however, the actuator and the system drivers cannot be co-located due to the MRI-compatibility requirements. The actuators are driven via long transmission lines, which affect the system dynamics significantly. Methods provided in this work produced accurate pressure estimation and control by accounting for the pressure dynamics in the lines, which has been neglected by previous work in this area. The effectiveness of the presented modeling and control methods were demonstrated on tele-operation test setups. This study also includes the design of necessary system components for the developed algorithms. An MRI-compatible optical sensor was developed for force feedback and its design was analyzed for high precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.