Abstract

Holistic tin-plating on the outer conductor is one of the key processes in the manufacture of semi-flexible coaxial cable, which is widely applied to the third generation (3G) mobile communication system. However, in the traditional horizontal tin-plating process, disadvantages such as the pinhole defects and low productivity effect cannot be avoided. In this paper, a vertical tin-plating process was proposed to reduce the pinhole defects and improve the tin-coating quality. Compared with the traditional horizontal tin-plating process, the immersion length was reduced from 300–400 mm to 10–100 mm and the tin-plating time was reduced from 7 s to 3 s in the proposed method. The experimental results indicate that immersion length and time are key parameters for the tin-plating quality. With this new tin-plating process, the experimental results show that the pinhole defects can be eliminated effectively by controlling the immersion depth below 100 mm and tin-plating time at 3 s. The thickness of tin-coating increased from not more than 5 μm to 12.3 μm with the proposed vertical tin-plating process. Meanwhile, the thickness of the intermetallic compounds (IMCs) layer between the tin-coating and copper wires was reduced from 3.26 μm to 0.62 μm if the immersion time decreased from 30 s to 1 s. Besides, a self-developed flux, which possesses a boiling point or decomposed temperature of active components over 300 °C, exhibits a better efficiency in reducing the pinhole formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.