Abstract

Hollow carbon nanofibers (HCNFs) were prepared by electrospinning method with several coaxial nozzles, in which the level of the inner nozzle-end is adjustable. Core/shell nanofibers were prepared from poly(methyl methacrylate) (PMMA) as a pyrolytic core and polyacrylonitrile (PAN) as a carbon shell with three types of normal (viz. inner and outer nozzle-ends are balanced in the same level), inward, and outward coaxial nozzles. The influence of the applied voltage on these three types of coaxial nozzles was studied. Specific surface area, pore size diameter, crystallinity, and degree of graphitization of the hollow and mesoporous structures of carbon nanofibers obtained after carbonization of the as spun PMMA/PAN nanofibers were characterized by BET analyses, X-ray diffraction, and Raman spectroscopy in addition to the conductivity measurements. It was found that specific surface area, crystallinity, and graphitization degree of the HCNFs affect the electrical conductivity of the carbon nanofibers.

Highlights

  • Carbon nanofibers (CNFs) have attracted considerable attention in recent years because they have superior mechanical strength and excellent electronic properties [1, 2] due to their unique structures, which are low grain boundary, 1D structure with high alignment and high surface area to volume ratio

  • The applied voltage was varied from 10 to 25 kV to study its effect on the morphologies of the obtained poly(methyl methacrylate) (PMMA)/PAN composite nanofibers, as spun PMMA/PAN composite nanofibers were thermally treated for oxidative stabilization for 30 min after increasing temperature to 250 °C at a rate of 5 °C min−1 in air, carbonized for 1 h at 800 °C in nitrogen, and heated at 1000 °C in nitrogen for another hour to obtain the Hollow carbon nanofibers (HCNFs)

  • We have clarified the influence of the applied voltage on the coaxial electrospinning of the PMMA/PAN composite nanofibers with different levels of inner nozzle-end and studied the effect of the levels of inner nozzle-end on the morphologies and physical properties of the obtained HCNFs

Read more

Summary

Background

Carbon nanofibers (CNFs) have attracted considerable attention in recent years because they have superior mechanical strength and excellent electronic properties [1, 2] due to their unique structures, which are low grain boundary, 1D structure with high alignment and high surface area to volume ratio Because of their unique properties, the CNFs are interesting materials for various applications such as photocatalysts [3, 4], electrodes for supercapacitors [5,6,7], rechargeable lithium-ion batteries [8,9,10], photovoltaic cells [11, 12], capacitive deionization process [13], and selective screening [14]. The applied voltage for the three types of nozzle-ends for coaxial electrospinning was optimized in terms of preparation of homogeneous carbon nanofibers with high electrical conductivity

Methods
Results and Discussion
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.