Abstract

The utility of thin-film TiO2 for photocatalysis would be greatly improved if the spatial variation of the electronic band edges near the surface could be engineered a priori to control the current of photogenerated minority carriers. The present work demonstrates such a concept. In particular, remote oxygen plasma treatment of polycrystalline anatase TiO2 with specified majority carrier concentration is employed in the test case of methylene blue photodegradation. The photoreaction rate varies by up to 35% in concert with a 0.4 eV change in built-in surface potential measured by photoelectron spectroscopy. The correlation between these changes agrees quantitatively with a photodiode–photocurrent model. The plasma treatment affects concentration of charged native defects within the first few atomic layers of the surface, most likely by lowering the concentration of oxygen vacancies within surface crystallites. In tandem, the position in the deep bulk is controlled via engineering the defect concentration at grain boundaries, thus illustrating the coordinated use of multiple defect engineering practices in polycrystalline material to accomplish quantitative manipulation of band bending and corresponding photocurrent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.