Abstract
This study investigated the effectiveness and mechanism for the control of internal phosphorus (P) liberation from sediment by hydrous zirconium oxide (HZrO2) combined with calcite, bentonite and zeolite. The results suggested that coexisting calcite, calcium-modified bentonite (CaBT) and calcium-modified zeolite (CaZ) all had the ability to promote the adsorption of phosphate (PO43−) onto HZrO2. The mechanisms of PO43− elimination by HZrO2/calcite mixture involved the adsorption of PO43− on calcite, the precipitation of PO43− with Ca2+, and the inner-sphere complexation of PO43− with HZrO2. The amendment of sediment with HZrO2/calcite, HZrO2/CaBT or HZrO2/CaZ mixture can effectively prevent the sedimentary P release, and the immobilization of mobile P in the sediment and the uptake of dissolved reactive P (DRP) from the interstitial water by the amendment material played a key role in the control of P release from sediment by the combined amendment. Capping sediment with HZrO2/calcite, HZrO2/CaBT or HZrO2/CaZ mixture also can effectively intercept sediment P release, and the formation of P static layer attributed to the uptake of interstitial water DRP and DGT (diffusive gradient in thin-films)-unstable P in the upper sediment by the capping material was a key to the inhibition of sedimentary P migration into the overlying water by the combined capping. The great majority of P immobilized by the HZrO2/calcite, HZrO2/CaBT or HZrO2/CaZ combined covering layer is stable P and it has a low re-releasing risk under dissolved oxygen-deficit and pH 5–9 condition. The stability of P bound by the combined covering layer was larger than that by the single HZrO2 covering layer. The results of this research show that the combined use of HZrO2 and calcite, HZrO2 and CaBT, or HZrO2 and CaZ as a capping material has great potential in the reduction of sediment P loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.