Abstract

The effect of the addition of two cationic surfactants of different chain length (decyl and dodecyl trimethylammonium bromide, DeTMABr and DTMABr, respectively) and one anionic surfactant of identical chain length (sodium dodecyl sulfate, SDS) on phase behavior, structure, and macroscopic properties of a bilayer forming nonionic surfactant (Brij 30) has been investigated by means of phase studies, rheology, turbidity measurements, dynamic light scattering, and freeze-fracture transmission electron microscopy. We concentrated on DTMABr because of the generically similar behavior for the other ionic surfactants. It is found that already very small amounts of added ionic surfactant have a very pronounced effect on the phase behavior of these systems. The pure nonionic surfactant forms bilayers and has a tendency for the formation of vesicles which becomes enhanced by charging the bilayer through the incorporation of the ionic surfactant. The presence of the ionic surfactant leads to much more viscous systems, which already at a total surfactant concentration of 150 mM become gel-like. For a given surfactant concentration, the elastic properties of the gels increase largely upon the addition of ionic surfactant. This effect is strongly synergistic, requiring only very small amounts of added ionic surfactant, and the elastic properties pass through a maximum for a content of ionic surfactant of about 3-5 mol %. This behavior can be explained in a self-consistent way by a simple rheological model and by combining it with light scattering data. For the addition of larger amounts, the elastic properties decrease again and the formed vesicles become structurally less defined as one is leaving the range of conditions for forming well-defined vesicles, which are required for forming elastic vesicle gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.