Abstract

The preferred conformations of peptides heavily based on the currently extensively exploited achiral and chiral alpha-amino acids with a quaternary alpha-carbon atom, as determined by conformational energy computations, crystal-state (x-ray diffraction) analyses, and solution ((1)H-NMR and spectroscopic) investigations, are reviewed. It is concluded that 3(10)/alpha-helical structures and the fully extended (C(5)) conformation are preferentially adopted by peptide sequences characterized by this family of amino acids, depending upon overall bulkiness and nature (e.g., whether acyclic or C(alpha) (i) <--> C(alpha) (i) cyclized) of their side chains. The intriguing relationship between alpha-carbon chirality and bend/helix handedness is also illustrated. gamma-Bends and semiextended conformations are rarely observed. Formation of beta-sheet structures is prevented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.