Abstract

Recent advances in the use of reversible addition–fragmentation chain transfer (RAFT) polymerization in dispersed phase systems have paved the way for the fine control of the morphology of latex particles that was not possible by conventional free radical polymerization techniques. With this approach, living amphiphilic block copolymers are synthesized that self-assemble to form micelles. The hydrophilic segment is formed from a water-soluble monomer which stabilizes the latex particles as polymerization proceeds and the latex particles grow. The hydrophobic ends of the RAFT diblocks ultimately grow into the polymer that forms the body of the particles. This paper presents examples of ways in which these advances can be used to engineer latex particles with unique morphologies that exhibit specific application properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.