Abstract

The study aims to investigate the possible defects that may occur during imprinting of poly(chloro- p-xylylene) (parylene-C) film (thermal oxidation, delamination, thermal cracking and insufficient filling at the periphery) and to overcome them by modifying the process conditions and mold design. X-ray diffraction (XRD) analyses results for the parylene-C films indicated that higher deposition pressure leads to a lower crystallinity of parylene-C film. By tuning the process conditions and mold design, patterned fields (composed of arrays of 25-µm-high, 10-µm-wide and 1-mm-long lines with 10 µm spacing) in 0.4-mm-thick and 20-mm-sized nickel molds could be successfully replicated on 60-µm-thick parylene-C films deposited at both 25 and 45 mTorr. Complete filling over the whole imprint area could be achieved at <270 °C with the press force at 2 kN and the press hold time of 900 s with the aid of an implemented dummy pattern. Both thermal cracking and delamination could be avoided, even at 270 °C, under the established process conditions and mold design with the help of an adhesion promotion treatment of silicon substrates (SF6 plasma etching for 2 min and spin-coating of KBM-503-based solution). Furthermore, the molds used for paryelne imprinting could be cleaned by dipping in chloronaphthalene solution at >175 °C, followed by an oxygen plasma etching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.