Abstract

Force variability during steady force tasks is strongly related to low-frequency oscillations (<0.25 Hz) in force. However, it is unknown whether low-frequency oscillations also contribute to the variability of oscillatory force tasks. To address this, twelve healthy young participants (21.08 ± 2.99 years, 6 females) performed a sinusoidal force task at 15% MVC at two different frequencies (0.5 and 1 Hz) with isometric abduction of the index finger. We recorded the force from the index finger and surface EMG from the first dorsal interosseous muscle and quantified the following outcomes: 1) trajectory variability and accuracy; 2) power spectrum of force and EMG bursting below 2 Hz; 3) power spectrum of the interference EMG from 4 to 60 Hz. The trajectory variability and error significantly increased from 0.5 to 1 Hz task (P < 0.01). Increased force oscillations <0.25 Hz contributed to greater trajectory variability and error for both the 0.5 and 1 Hz oscillatory task (R2 > 0.33; P < 0.05). The <0.25 Hz oscillations in force were positively associated with greater power in the <0.25 Hz for EMG bursting (R2 > 0.52; P < 0.01). The modulation of the interference EMG from 35 to 60 Hz was a good predictor of the <0.25 Hz force oscillations for both the 0.5 Hz task and 1 Hz task (R2 > 0.66; P < 0.01). These results provide novel evidence that, similar to steady contractions, low-frequency oscillations of the motor neuron pool appear to be a significant mechanism that controls force during oscillatory force tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call