Abstract

This work investigates how independent perturbations and cross-correlation perturbations affect optical vortex beams. Theoretical and experimental results show that both perturbations cause the intensity, average orbital angular momentum (OAM), and the OAM spectrum of the vortex beam to vary periodically with the perturbation direction, but with different periods. When the beam is subjected to independent perturbations, the average OAM changes periodically with θ in every π/2; when the beam is subjected to cross-correlation perturbations, the average OAM varies with θ in every π. The results of this work provide a method to control the OAM and regulate low-coherence vortex beams in turbulent environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call