Abstract

This work investigates how independent perturbations and cross-correlation perturbations affect optical vortex beams. Theoretical and experimental results show that both perturbations cause the intensity, average orbital angular momentum (OAM), and the OAM spectrum of the vortex beam to vary periodically with the perturbation direction, but with different periods. When the beam is subjected to independent perturbations, the average OAM changes periodically with θ in every π/2; when the beam is subjected to cross-correlation perturbations, the average OAM varies with θ in every π. The results of this work provide a method to control the OAM and regulate low-coherence vortex beams in turbulent environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.