Abstract

Abstract Tuning the optical adsorption edge of TiO2 is attracting increasing attention as a potential solution to the worldwide energy shortage. A possible strategy to achieve high efficiency photocatalysis with TiO2 is through dopants to modulate chemical composition. Based on first-principles calculations, we propose a hole-strain-mediated coupling mechanism between co-doped acceptors in anatase TiO2. When the dopant complex on neighboring oxygen sites contains a large radius atom, and the doped system has at least one net hole, the dopants will strongly couple to form a pair through the local lattice strain induced by the large dopant. The coupling results in bandgap narrowing due to the appearance of the fully occupied mid-gap states, leading to a much more effective band gap reduction than that induced by mono-doping or conventional donor–acceptor codoping. The calculated absorption spectra show that acceptor–acceptor codopings could shift the absorption edge to the visible light region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call