Abstract

Odors have posed challenges to the advancement of aerobic composting. This work aims to identify the primary components responsible for odors and assess the effectiveness and mechanisms of the zero-valent iron/H2O2 system controlling various odorants in aerobic composting. Swine manure and food waste were used as composting materials, with the addition of zero-valent iron and hydrogen peroxide to mitigate odor emissions. Results revealed that odorants included ammonia, hydrogen sulfide, and 22 types of volatile organic compounds (VOCs), with ethyl acetate, heptane, and dimethyl disulfide being predominant. Among the odorants emitted, ammonia accounted for 75.43%, hydrogen sulfide for 0.09%, and identified VOCs for 24.48%. The ZVI/H2O2 system showed a significant reduction in ammonia and VOCs emission, with the reduction of 51% (ammonia) and 41.3% (VOCs) respectively, primarily observed during the thermophilic period. The occurrence of Fenton-like reactions and changes in key microbial populations were the main mechanisms accounting for odor control. The occurrence of Fenton-like reaction was confirmed by X-ray photoelectron spectroscopy and reactive oxygen detection, showing the oxidation of zero-valent iron by H2O2 to higher valence elemental iron, and the simultaneous production of ·OH. Microbial analysis indicated that an enrichment of specific microorganisms with Bacillus contributed to feammonx and Bacillaceae contributed to organic biodegradation. Redundancy analysis highlighted the role of key microbial species (Bacillaceae, Bacillus, and Ureibacillus) in effectively reducing the level of ammonia and volatile organic compounds. These novelty findings illustrated that the potential of this system is promising for controlling the emission of odorants and aerobic composting reinforcement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call