Abstract

Next-generation power electronics is a term that is used to refer to devices of the future that will need to process considerably more energy in order to function than is typical for current electronic devices. For instance, the amounts of power that electric cars will need to process in the future necessitates new methods and techniques, particularly those that permit a minimising of power loss and can dissipate heat efficiently. Professor Qixin Guo is focused on understanding more about next-generation power electronics. He explains that one means of achieving these ambitions is through the use of wide bandgap (WBG) semiconductors, which are preferred over narrow band semiconductors, such as Silicon. 'This is because the large energy separation between the conduction and the valance bands enables electronic devices to operate at elevated temperatures and higher voltages,' outlines Guo. Powering electronics necessitates pushing an electron into a conducting state and bandgaps measure how energy is required to do this. Therefore, the larger the bandgap, the more a material can withstand a stronger electric field. 'Ultimately, this means that components can be thinner, lighter and handle more power than components that are made up of materials with lower bandgaps.' With that in mind, researchers around the world are exploring materials that can be used as WBG semiconductors to usher in the next generation of power electronics. If this can be achieved, our lives will be affected in myriad ways, where new efficiencies enable power capabilities that would have been unthinkable even just a few years ago.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.