Abstract

This paper studies the control of nonlinear Galerkin systems, which are an important class of nonlinear systems that arise in reduced-order modeling of infinite-dimensional systems. A novel approach is proposed in which a linear parameter-varying (LPV) model representing the Galerkin model is built, where the parameter variation is dictated by a specially designed adaptation scheme. The controller design is then carried out on the simpler LPV model, instead of dealing directly with the complicated nonlinear Galerkin system. An automatically scheduled H-infinity controller is designed using the LPV model, and it is proven that this controller will indeed achieve the desired stabilization when applied to the nonlinear Galerkin model. The approach is illustrated with an example on cavity flow control, where the design is seen to produce satisfactory results in suppressing unwanted oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.