Abstract

A general methodology to design open loop controllers for nonlinear, dynamic, continuous systems is presented and applied to control a single flexible link (SFL). In this application, the partial differential equations that describe the beam system are first analyzed via the finite element method (FEM) and Newmark integration method. Two open loop control inputs to achieve specified system performance criteria are then computed by posing and solving inverse dynamics problems. These analyses use nonlinear programming (NLP) algorithms and analytical gradients that are computed by the direct sensitivity method. The open loop control is verified experimentally. Closed loop controller synthesis for linear time invariant (LTI) and linear time varying systems (LTV) is relatively well understood. To apply this knowledge base to the control of the SFL, the nonlinear finite element plant model is linearized and recast in standard state space form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.