Abstract

AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract In a previous work (Park HM, Lee MW. An efficient method of solving the Navier–Stokes equation for the flow control. International Journal of Numerical Methods in Engineering 1998; 41: 1131–1151), the authors proposed an efficient method of solving the Navier–Stokes equations by reducing their number of modes. Employing the empirical eigenfunctions of the Karhunen–Loève decomposition as basis functions of a Galerkin procedure, one can a priori limit the function space considered to the smallest linear sub-space that is sufficient to describe the observed phenomena, and consequently, reduce the Navier–Stokes equations defined on a complicated geometry to a set of ordinary differential equations with a minimum degree of freedom. In the present work, we apply this technique, termed the Karhunen–Loève Galerkin procedure, to a pointwise control problem of Navier–Stokes equations. The Karhunen–Loève Galerkin procedure is found to be much more efficient than the traditional method, such as finite difference method in obtaining optimal control profiles when the minimization of the objective function has been done by using a conjugate gradient method. Citing Literature Volume33, Issue430 June 2000Pages 535-557 RelatedInformation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.