Abstract

This paper investigates the control of multistability in a self-excited memristive hyperchaotic oscillator using linear augmentation method. Such a method is advantageous in the case of system parameters that are inaccessible. The effectiveness of the applied control scheme is revealed numerically through the nonlinear dynamical tools including bifurcation diagrams, Lyapunov exponent spectrum, phase portraits, basins of attraction and relative basin sizes. Results of such numerical methods reveal that the asymmetric pair of chaotic attractors which were coexisting with the symmetric periodic one in the system, are progressively annihilated as the coupling parameter is increasing. The main transitions observed in the control system are the coexistence of three distinct attractors for weak values of the coupling strength. Above a certain critical value of the coupling parameter, only two attractors are now coexisting within the system. Finally, for higher values of the control strength, the controlled system becomes regular and monostable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call