Abstract
Abstract Recently two powerful control algorithms, namely, dynamic matrix control (DMC) and extended self-tuning regulator (ESTR), have been advocated for the design of robust industrial controllers. The present paper demonstrates the application of DMC and ESTR algorithms to a bulk methyl methacrylate batch polymerization reactor operating under strong diffusional limitations of termination and propagation reactions. A realistic mathematical model is employed to simulate the strong nonlinear, time-varying dynamics of the polymerization process. The general control objective is to maintain the monomer conversion and number-average molecular weight along some desired state trajectories despite the presence of process disturbances in the total initiator concentration. It is shown that both controllers can satisfactorily control the monomer conversion and number-average molecular weight by manipulating the polymerization temperature. The similarities and the main operating features of the two controllers are...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Engineering Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.