Abstract

The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to ∼99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.