Abstract

The control method based on the time-state control form has been proposed to stabilize the chained system, which is a canonical-form nonlinear system. In this study, the control method is used for controlling a mobile robot in auto-parking situations. The proposed controller includes a parameter that is allowed to switch at arbitrary times without loss of the stability of the system. The robot employing the proposed controller reaches the target position by switching its traveling direction to avoid collisions with obstacles. However, the shape of the robot gives a problem. We resolve this by using the switchable parameter included in the proposed controller, and show the availability of switching the parameter. Furthermore, the appropriate switching of the traveling direction and the parameter enables the robot to reach the target faster. Thus, we search the appropriate values of the parameter and the switching points of the traveling direction using the genetic algorithm. In the auto-parking experiments that incorporate the search results, the robot can reach the target position faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.