Abstract

Control of mitochondrial respiration depends on ADP availability to the F1-ATPase. An electrochemical gradient of ADP and ATP across the mitochondrial inner membrane is maintained by the adenine nucleotide translocase which provides ADP to the matrix for ATP synthesis and ATP for energy-dependent processes in the cytosol. Mitochondrial respiration is responsive to the cytosolic phosphorylation potential, ATP/ADP.Pi which is in apparent equilibrium with the first two sites in the electron transport chain. Conventional measures of free adenine nucleotides is a confounding issue in determining cytosolic and mitochondrial phosphorylation potentials. The advent of phosphorus-31 nuclear magnetic resonance (P-31 NMR) allows the determination of intracellular free concentrations of ATP, creatine-P and Pi in perfused muscle in situ. In the glucose-perfused heart, there is an absence of correlation between the cytosolic phosphorylation potential as determined by P-31 NMR and cardiac oxygen consumption over a range of work loads. These data suggest that contractile work leads to increased generation of mitochondrial NADH so that ATP production keeps pace with myosin ATPase activity. The mechanism of increased ATP synthesis is referred to as 'stimulus-response-metabolism' coupling. In muscle, increased contractility is a result of interventions which increase cytosolic free Ca2+ concentrations. The Ca2+ signal thus generated increases glycogen breakdown and myosin ATPase in the cytosol. This signal is concomitantly transmitted to the mitochondria which respond to small increases in matrix Ca2+ by activation of Ca2+-sensitive dehydrogenases. The Ca2+-activated dehydrogenase activities are key rate-controlling enzymes in tricarboxylic acid cycle flux, and their activation by Ca2+ leads to increased pyridine nucleotide reduction and oxidative phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.