Abstract

The effects of a TiN intermediate layer on the microstructure and magnetic properties of the FePt films were investigated. It was found that the TiN layer could effectively block the diffusion of Cr into the FePt film. The good epitaxial relationships among these layers were revealed from the transmission electron microscopy (TEM) results. With introducing TiN intermediate layer the chemical ordering and magnetic properties of FePt films significantly improved. The FePt film with 5 nm TiN exhibited a high perpendicular coercivity of 13.7 kOe and a low in-plane coercivity of 0.24 kOe, resulting from the combined contribution of TiN (200) orientation, TiN layer roughness and the effective block of Cr diffusion. Moreover, with doping C into the FePt-SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling, the grain size of FePt films decreased, and well-separated FePt grains and uniform size were formed. By optimizing the sputtering process, the [FePt (4 nm)-SiNx 40 vol·% ]- 20 vol·% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small FePt grain size of 5.6 nm in average diameter was obtained, which are suitable for ultrahigh density perpendicular recording.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.