Abstract

In this paper, the steady flow and heat transfer of an incompressible electrically conducting micropolar fluid through a parallel plate channel is investigated. The upper and lower plate have been kept at the two constant different temperatures and the plates are electrically insulated. The applied magnetic field is perpendicular to the flow, while the Reynolds number is significantly lower than one i.e. the considered problem is in induction-less approximation. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and closed-form solutions are obtained. The influences of each of the governing parameters on velocity, heat transfer on the plates (Nusselt number), flow rate and skin friction are discussed with the aid of graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.