Abstract

In fabricating functional layers, including thin-film transistors and conductive electrodes, using roll-to-roll (R2R) processing on polymer-based PET film, the instability of the slot-die coating meniscus under a high-speed web impedes functional layer formation with the desired thickness and width. The thickness profiles of the functional layers significantly impact the performance of the final products. In this study, we introduce an electrohydrodynamic (EHD)-based voltage application module to a slot-die coater to ensure the uniformity of the cross-machine direction (CMD) thickness profile within the functional layer and enable a stable, high-speed R2R process. The module can effectively control the spreadability of the meniscus by utilizing variations in the surface tension of the ink. The effectiveness of the EHD module was experimentally verified by applying a high voltage to a slot-die coater while keeping other process variables constant. As the applied voltage increases, the CMD thickness deviation reduces by 64.5%, and the production rate significantly increases (up to 300%), owing to the formation of a stable coated layer. The introduction of the EHD-based application module to the slot-die coater effectively controlled the spreadability of the meniscus, producing large-area functional layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call