Abstract

A numerical study based on the Large Eddy Simulation (LES) methodology was made of mass transfer in locally forced turbulent separated and reattaching flow over a backward facing step. The local forcing was given to the flow by a sinusoidally blowing /suction of the fluid into a separated shear layer. The Reynolds number was fixed at 33000 and Schmidt number at 1. The forcing frequency was varied in the range 0 iSt�i 2, where St is the Strouhal number of forcing. The obtained results revealed the existence of an optimum forcing frequency value, St = 0.25, in terms of the reduced reattachment length. At this frequency the mass transfer is significantly enhanced in the recirculation zone. The influence of the frequency and the amplitude of forcing, in the maximum mass transfer positions and the maximum Sherwood number, are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.