Abstract

AbstractWe present the use of polymer/polymer interfaces to control light-emitting polymer devices. Bilayer devices utilizing poly(9-vinyl carbazole) (PVK) as a hole transporting/electron blocking polymer together with a pyridine containing electron transporting layer show dramatically improved efficiency and brightness as compared to single layer devices. This is attributed to charge confinement and exciplex emission at the PVK/emitting polymer interface. The introduction of emeraldine base (EB) form of polyaniline (PAN) on both side of the emitting layer enables the device to work under both forward and reverse bias, as well as in AC modes. Interfaces play an important role in the operation of these devices. Furthermore, when the EB is replaced by sulfonated polyaniline (SPAN) on the cathode side and the emitting layer is properly modified to balance electron and hole transport, the device generates different colors of light, red under forward bias and green under reverse bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call