Abstract

The behaviour of the antimetastatic Ru(III) complex imidazolium [trans-RuCl₄(1H-imidazole)(DMSO-S)] (NAMI-A) under physiological conditions and its interactions with human serum albumin (hsA) have been studied using electron paramagnetic resonance spectroscopy (EPR). In physiological buffer at pH 7.4, these experiments demonstrate that the DMSO ligand is replaced rapidly by water, and spectra from the subsequent formation of five other Ru(III) complexes show further aquation processes. Although EPR spectra from mono-nuclear Ru(III) complexes are visible after 24 h in buffer, a significant decrease in the overall signal intensity following the first aquation step is consistent with the formation of oxo-bridged Ru(III) oligomers. Incubation with hsA reveals very rapid binding to the protein via hydrophobic interactions. This is followed by coordination through ligand exchange with protein side chains, likely with histidine imidazoles and at least one other specific site. Similar behaviour is observed when the complex is incubated in human serum, indicating that hsA binding dominates speciation in vivo. The addition of ascorbic acid to NAMI-A in buffer leads to quantitative reduction, producing EPR-silent Ru(II) complexes. However, this process is prevented when the complex binds coordinatively to hsA. Together, these results demonstrate the key role that hsA plays in defining the species found in vivo following intravenous treatment with NAMI-A, through prevention of oligomerization and maintenance of the oxidation state, to give protein-bound mono-nuclear Ru(III) species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.