Abstract
An inversion method based on a genetic algorithm has been developed to control the lateral thickness gradients of a Mo-Si multilayer deposited on curved substrates by planar magnetron sputtering. At first, the sputtering distribution of the target is inversed from coating thickness profiles of flat substrates at different heights. Then, the speed profiles of substrates sweeping across the target are optimized according to the desired coating thickness profiles of the primary and secondary mirrors in a two-bounce projection system. The measured coating thickness profiles show that the non-compensable added figure error is below 0.1 nm rms, and the wavelength uniformity across each mirror surface is within ±0.2% P-V. The inversion method introduced here exhibits its convenience in obtaining the sputtering distribution of the target and efficiency in coating iterations during process development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.