Abstract

Delay-Differential Equations (DDEs) are the most common representation for systems with delay. However, the DDE representation has limitations. In network models with delay, the delayed channels are typically low-dimensional and accounting for this heterogeneity is challenging in the DDE framework. In addition, DDEs cannot be used to model difference equations. In this paper, we examine alternative representations for networked systems with delay and provide formulae for conversion between representations. First, we examine the Differential-Difference (DDF) formulation which allows us to represent the low-dimensional nature of delayed information. Next, we consider the coupled ODE-PDE framework and extend this to the recently developed Partial-Integral Equation (PIE) representation. The PIE framework has the advantage that it allows the H∞-optimal estimation and control problems to be solved efficiently using the recently developed software package PIETOOLS. In each case, we consider a very general class of networks, specifically accounting for four sources of delay - state delay, input delay, output delay, and process delay. Finally, we use a scalable network model of temperature control to show that the use of the DDF/PIE formulation allows for optimal control of a network with 40 users, 80 states, 40 delays, 40 inputs, and 40 disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.