Abstract
Singlet fission (SF), which produces two triplet excitons from a singlet exciton, has been identified as a novel nanointerface for efficient (photo)energy conversion. This study aims to control exciton formation in a pentacene dimer through intramolecular SF using hydrostatic pressure as an external stimulus. We reveal the hydrostatic-pressure-induced formation and dissociation processes of correlated triplet pairs (TT) in SF by means of pressure-dependent UV/vis and fluorescence spectrometry and fluorescence lifetime and nanosecond transient absorption measurements. The photophysical properties obtained under hydrostatic pressure suggested distinct acceleration of the SF dynamics by microenvironmental desolvation, the volumetric compaction of the TT intermediate based on solvent reorientation toward an individual triplet (T1), and pressure-induced shortening of T1 lifetimes. This study provides a new perspective on the control of SF by hydrostatic pressure as an attractive alternative to the conventional control strategy for SF-based materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.