Abstract
The association of pentaammineruthenium(II) with the reducible ligand 4,4[prime]-azopyridine leads to a pH-induced redox reaction in which ruthenium is oxidized to the III state, while 4,4[prime]-azopyridine is reduced to hydrazopyridine. In this process, the conjugated ligand is transformed in a nonconjugated one, with loss of its intramolecular electron-transfer properties. In order to exploit this control of an intramolecular electron transfer by a protonation process, the authors have prepared shish kebab oligomers by first inserting a ruthenium chloro carbonyl complex in tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin. The resulting Ru(CO)(porphyrin) complex is photochemically decarbonylated in the presence of bridging ligands (4,4[prime]-azopyridine or pyrazine). Oligomers are thus obtained, which can be oxidized by iodine, giving rise to intervalence transitions between ruthenium(II) and -(III) in the near-infrared. This provides a convenient way to monitor electron transfer along the oligomer chain. In the case of 4,4[prime]-azopyridine, the pH-induced redox reaction is again observed. Starting from a homovalent ruthenium(II) chain, this gives the possibility to switch on or off the intervalence transition by a protonation/deprotonation reaction. 17 refs., 8 figs. 2 tabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.