Abstract

Innate immune recognition of the bacterial cell wall constituent peptidoglycan by the cytosolic nucleotide-binding oligomerization domain 2 (Nod2) receptor has a pivotal role in the maintenance of intestinal mucosal homeostasis. Whereas peptidoglycan cleavage by gut-derived lysozyme preserves the recognition motif, the N-acetylmuramoyl-L-alanine amidase activity of the peptidoglycan recognition protein 2 (PGLYRP-2) destroys the Nod2-detected muramyl dipeptide structure. PGLYRP-2 green fluorescent protein (GFP) reporter and wild-type mice were studied by flow cytometry and quantitative RT-PCR to identify Pglyrp-2 expression in cells of the intestinal mucosa and reveal a potential regulatory function on epithelial peptidoglycan recognition. CD3(+)/CD11c(+) T lymphocytes revealed significant Pglyrp-2 expression, whereas epithelial cells and intestinal myeloid cells were negative. The mucosal Pglyrp-2-expressing lymphocyte population demonstrated a mixed T-cell receptor (TCR) αβ or γδ phenotype with predominant CD8α and less so CD8β expression, as well as significant staining for the activation markers B220 and CD69, presenting a typical intraepithelial lymphocyte phenotype. Importantly, exposure of peptidoglycan to PGLYRP-2 significantly reduced Nod2/Rip2-mediated epithelial activation. Also, moderate but significant alterations of the intestinal microbiota composition were noted in Pglyrp-2-deficient animals. PGLYRP-2 might thus have a significant role in regulation of the enteric host-microbe homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.