Abstract

Within the cytoplasm of mammalian cells is a protein called cyclic GMP-AMP synthase (cGAS), which acts to defend against infection and other threats to the host. cGAS operates in this manner through its ability to detect a molecular occurrence that should not exist in healthy cells - the existence of DNA in the cytosol. Upon DNA binding, cGAS synthesizes cyclic GMP-AMP (cGAMP), a cyclic dinucleotide that activates the endoplasmic reticulum-localized protein stimulator of interferon genes (STING). STING-mediated signaling culminates in host defensive responses typified by inflammatory cytokine and interferon expression, and the induction of autophagy. Studies over the past several years have established a consensus in the field of the enzymatic activities of cGAS in vitro, as it relates to DNA-induced production of cGAMP. However, much additional work is needed to understand the regulation of cGAS functions within cells, where multiple sources of DNA can create a problem of self and non-self discrimination. In this review, we provide an overview of how the cGAS-STING pathway mediates innate immune responses during infection and other cellular stresses. We then highlight recent progress in the understanding of the increasingly diverse ways in which this DNA-sensing machinery is regulated inside cells, including how cGAS remains inactive to host-derived DNA under conditions of homeostasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.