Abstract
Nanoparticles are unfamiliar to researchers in toxicology. Toxicity may be generated simply due to the reduction in size. Compounds that prevent or cure toxic materials may not work on nanoparticles. Furthermore, as there are more and more applications of nanoparticles in drug delivery and in vivo imaging, controlling the transport and toxicity will be primary concerns for medical application of nanoparticles. Gold nanoparticles (GNPs) if injected intraperitoneally into mice can enter hippocampus and induce cognitive impairment. GNPs caused a global imbalance of monoamine levels, specifically affecting the dopaminergic and serotonergic neurons. Pretreatment of tea melanin significantly prevented the deposition of GNPs in mouse brains, especially in the hippocampus. Pretreatment of melanin completely alleviated GNP‐induced impairment of cognition. Pre‐administration of melanin stably maintained monoamines at normal profiles. Melanin completely prevented the invasion of GNPs into the Cornu Ammonis region of the hippocampus shown by coherent anti‐Stoke Raman scattering microscopy. Here we show that the administration of tea melanin prevented the accumulation of Au in brain, the imbalance of monoamines, and the impairment of cognition in mice. The current study provides a therapeutic approach to toxicity of nanoparticles and a novel strategy to control the transport of GNP in mouse brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.