Abstract

We developed a method for controlling local architecture and chemistry simultaneously in biomaterial implants to control microvessel ingrowth in vivo. Porous polypropylene disks (5 mm in diameter and 40 microm thick) were plasma-coated with a fluoropolymer and then laser-drilled with 50-microm-diameter holes through their thickness. We then oxidized the disks to create hydroxyl functionality on the exposed polypropylene (inside the holes). Acrylamide was grafted to the hydroxyl groups through polymerization in the presence of activating ceric ions. Staining with toluidine blue O demonstrated that grafting occurred only inside the holes. We used the Hoffman degradation reaction to convert the amide groups of acrylamide to amine groups, and then we used ethylene glycol diglycidyl ether to attach biomolecules of interest inside the holes: secreted protein acidic and rich in cysteine (SPARC) peptide Lys-Gly-His-Lys (KGHK; angiogenic), thrombospondin-2 (TSP; antiangiogenic), or albumin (rat; neutral). In vivo testing in a rat subcutaneous dorsum model for a 3-week interval demonstrated a greater vessel surface area (p = 0.032) and a greater number of vessels (p = 0.043) in tissue local to the holes with KGHK-immobilized disks than with TSP-immobilized disks. However, differences between KGHK-immobilized and albumin-immobilized disks were less significant (p = 0.120 and p = 0.289 for the vessel surface area and number of vessels, respectively). The developed methods have potential applications in biomaterial design applications for which selective neovascularization is desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.