Abstract

Minimizing ice recrystallization injury in tissues and organs has historically been sought using biological antifreeze proteins. However, the size of these compounds can limit permeation and their potential immunogenicity disqualifies them from use in several cryopreservation applications. Novel small molecule carbohydrate-derived ice recrystallization inhibitors (IRIs) are not subject to these constraints, and thus we sought to evaluate the ability of a highly active IRI to permeate liver tissue and control recrystallization. Rat liver tissue blocks (0.5 mm2) were incubated with the IRI for 6 h at 22 °C and subsequently plunged in liquid nitrogen. Ice crystals within the tissue were fixed using a formal acetic alcohol fixative as it was rewarmed from −80 °C to 22 °C over the course of 48 h. The untreated control demonstrated a gradient of increasing crystal size from the exterior to the interior region of the tissue; however, the IRI-treated condition had no such gradient and exhibited small crystals throughout. Threshold segmentation confirmed a significant reduction in the ice crystal size within the interior region of the IRI-treated condition, suggesting the IRI permeated throughout and effectively controlled recrystallization within the tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.